
Modeling and Scheduling for MPEG-4 Based

Video Encoder Using a Cluster of Workstations

Yong He1, Ishfaq Ahmad2, and Ming L. Liou1

1 Department of Electrical and Electronic Engineering
{eehey, eeliou}@ee.ust.hk

2 Department of Computer Science
iahmad@cs.ust.hk

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract. In this paper, we first present an Object Composition Petri
Nets (OCPN) based model methodology for describing the dynamic be-
haviour of the multiple video objects and user interactions during the
entire MPEG-4 video session; then, a Group of Video Object Plane
(GOV) based periodical scheduling algorithm is proposed to assign the
encoder tasks to a cluster of workstations with load balancing guaran-
tee. The scheduling scheme can allocate the tasks efficiently according
to the timing constraints as well as user interactions. The performance
of the encoder can scale according to the number of workstations used.
The experiment results indicate that a real-time encoding rate can be
achieved for the sequences with multiple video objects.

1 Introduction

Most current multimedia applications can be viewed as the merging of tradi-
tional computer, communications, and broadcasting industries. In order to sup-
port the functionalities, such as content-based interactivity, high compression
and random access, a new international standard, MPEG-4, is currently being
developed by MPEG (Moving Picture Experts Group) and expected to be final-
ized towards the end of 1998 [1]. With a flexible toolbox approach, MPEG-4 is
capable of supporting diverse new functionalities and satisfy various application
requirements and hence will cover a broad range of multimedia applications [5].

MPEG-4, due to its content-based representation nature and flexible config-
uration structure, is considerably more complex than previous standards such
as MPEG-1, MPEG-2 and H.263. In addition, MPEG-4 enables user to ma-
nipulate and process the objects with various dedicated tools. Any MPEG-4
hardware implementation is likely to be very much application specific. There-
fore, software-based implementation is a natural and viable option. The main
problem with such an approach is the requirement of a huge amount of comput-
ing power to support real-time encoding. With the developments in parallel and
distributed systems, a higher degree of performance at an affordable cost (such
as a network of workstations or PCs) can be achieved, provided the parallelism

P. Zinterhof, M. Vajteršic, A. Uhl (Eds.): ACPC’99, LNCS 1557, pp. 306–316, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Modeling and Scheduling for MPEG-4 Based Video Encoder 307

from the application at hand is effectively extracted. While although MPEG-
4 encoding is highly suitable for implementation using parallel and distributed
systems, it is nevertheless a non-trivial task because of the unpredictable nature
of MPEG-4 workload.

In this paper, we use a Petri net based modeling technology to describe the
temporal relationships between various video objects and user interactions. An
efficient scheduling algorithm is proposed to improve the performance of the
video encoder with load balancing guarantee. With the proposed approaches,
our encoder can allocate the tasks efficiently according to the timing constraints
as well as user interactions. The performance of the encoder can scale according
to the number of workstations used, With 20 workstations, the encoder can
achieve a real-time encoding rate on some multiple objects sequences.

The rest of this paper is arranged in the following manner: Section 2 gives
a brief overview of MPEG-4 video verification model. Section 3 describes the
proposed implementation approach in detail, including the Object Composition
Petri Net (OCPN) based modeling and a dynamic scheduling algorithm. Section
4 provides the experimental results and the last section presents the conclusion.

2 Overview of MPEG-4 Video Verification Model

MPEG-4 aims at providing the standard technological elements enabling the
integration of the production, distribution and content access paradigms of the
multimedia environment [4]. MPEG-4 video is an object-based hybrid natural
and synthetic coding standard which specifies the technologies enabling the func-
tionalities such as content-based interactivity, efficient compression and error re-
silience [8]. Fig.1 illustrates MPEG-4 video coding and composition procedure
with user interactions. Both encoder and decoder are based on the concept of
video object planes (VOPs).

Interactions Reconstructed scene

Segmentation

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

Library

��
��
��
��
��

��
��
��
��
��

Video scene

C
om

po
si

to
r

Decoder

Decoder

Decoder��
��
��
��

2

0

VOPSe
gm

en
ta

tio
n

2VOP

����
����
����

����
����
����

��
��
��
��

1VOP

0VOP

��
��
��
��

Encoder

Encoder

Encoder

1VOP
���
���
���
���

���
���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���
���

VOP
���
���
���
���

Encoder Decoder

Fig. 1. MPEG-4 video scene coding and composition.

The video encoder is composed of a number of VOP encoders. Each object
is segmented from the input video signal and goes through the same encod-
ing scheme separately. The bitstreams of different VOPs are then multiplexed



308 Yong He, Ishfaq Ahmad, and Ming L. Liou

and transmitted. At the decoder, the received bitstream are demultiplexed and
decoded by each VOP decoder. The reconstructed video objects are then com-
posited by the composition information (which is sent along with the bitstream)
and presented to the user. The user interaction with the objects such as scaling,
dragging and linking can be handled either in the encoder or in the decoder.

Each VOP encoder consists of three main parts: shape coder, motion esti-
mation/compensation, and texture coder. Shape coder is used to compress the
alpha plane information which indicates the object region and contour within
the scene. Motion estimation and compensation (ME/MC) are used to reduce
temporal redundancies, and the techniques such as unrestricted ME/MC, ad-
vanced prediction mode and bidirectional ME/MC are supported to obtain a
significant quality improvement. The texture coder which deals with the intra
and residual data after motion compensation of VOPs includes algorithms that
are similar or identical to the ones used in H.263.

MPEG-4 also supports scalable coding of video objects in both spatial and
temporal domains, and provides error resilience across various media. In addi-
tion to the above basic technologies used in the encoder structure, the toolbox
approach of MPEG-4 video makes it possible to achieve more improvement for
some special cases by dedicated tools. Further details on the coding and syntax
of MPEG-4 video can be found in [6].

3 MPEG-4 Video Encoder Parallelism

In our MPEG-4 based multimedia project, we have implemented an video en-
coder on a cluster of dedicated workstations that collectively work as a virtual
parallel machine. The architecture of MPEG-4 video encoder as shown Fig.1
also happens to be very suitable for distributed computing. Each input VOP is
encoded separately and efficient performance can be achieved by decomposing
the whole encoder into separate tasks with individual VOP encoders and run-
ning them simultaneously. However, the task of parallelizing the MPEG-4 video
encoder on a cluster of workstations is a non-trivial task as it requires a careful
scheduling of various tasks of the encoder to ensure that spatio-temporal rela-
tionships between various VOPs are preserved. Fig.2 is a playout example of a

Interval 1 Interval 2t0 t1 t2

Video Object 0 

Video Session

Video Object 1

Video Object 2 time

Video Object 3

Fig. 2. Playout scenario of a MPEG-4 video session in time chart.

MPEG-4 video session in time chart. The presentation scenario begins with con-
current playout of V O0 and V O1, then followed by a new video object V O3 at the



Modeling and Scheduling for MPEG-4 Based Video Encoder 309

time t1. While V O2 can be treated as the background video object throughout
the whole session. The distinct characteristic of each video object, such as the
shape size, playout duration and spatial allocation, can be different from each
other, and the temporal relationship among the objects may also be designed
synthetically. For example, we can specify that V O0 and V O1 are synchronized
during the presentation from t0 to t1, and V O2 and V O3 are synchronized from
t1 to t2; the playout frame rate of V O2 and V O3 is 5 frames/sec. and the frame
rate of V O0 and V O1 is 10 frames/sec. According to the states of the video ob-
jects, the entire session can be partitioned into a number of presentation intervals
as Fig.2 shows.

For MPEG-4 based video presentation, the system must observe and obey
the temporal relations among various video objects at the time of playout. The
coordination of real-time presentation of video sequences and maintenance of
the timing-order among video objects are known as temporal synchronization.
There are two styles of synchronization, which can be identified as intra-object
synchronization and inter-object synchronization. Intra-object synchronization
refers to the maintenance of real-time constraints across a continuous video ob-
ject sequence and is required to meet the respective playout deadlines within
the sequence. Inter-object synchronization refers to the maintenance of real-time
constraints across more than one video object sequences and has to be satisfied
since the playout of video objects may be dependent to each other in the scene.

The maintenance of temporal synchronization is the most crucial requirement
in a distributed multimedia system. To enable a perfect playout manner at the
client site, the entire system must be able to operate in a synchronized fashion.
Since the encoder is the most computational intensive component of the entire
system, we address the problem of designing efficient scheduling algorithms for
encoding multiple video objects on the fly that guarantee real-time continuous
presentation at the client site. Here, we assume that the network can provide a
certain level of Quality of Service (QoS) throughput for the issues of networking
communication is beyond this paper.

In real-time applications, the video encoder should be fast and efficient
enough to meet the explicit playout timing requirement. It is impossible to
achieve such real-time performance with a single PC or workstation, and parallel
processing seems to be a viable solution for such problem as mentioned above.
Due to the limited number of available processors, we have to determine the
processing schedule of the video object tasks and manage the system resources
carefully according to the playout requirements of the tasks, so as to guarantee
a smooth playout at the presentation clients.

3.1 Modeling MPEG-4 Video with Object Composition Petri Nets

To elaborate a feasible scheduling scheme, a model specifying the timing con-
straints among different video objects is necessary. Various modeling techniques
have been proposed and the Petri net based model has been shown to be a useful
technique for specifying object level synchronization requirements [10]. Here, we
employ such a model known as the object composition Petri net (OCPN) to



310 Yong He, Ishfaq Ahmad, and Ming L. Liou

represent the occurrence of multiple video objects due to its ability to explicitly
capture all necessary temporal relations. In general, an OCPN refers to a Petri
net graph, each place represents the playout of a video object while each transi-
tion represents a synchronization point. However, in order to model the flow of
MPEG-4 based video objects, more definitions are essential to allow the dynamic
behaviours such as user interactions and object attributes variation. Therefore,
We introduce an augmented OCPN model which is capable of supporting in-
teractive operations while satisfying the complex synchronization requirement.
With this model, one can precisely describe temporal information of the video
object, user interaction, as well as scheduling procedure involved in the entire
real-time video session.

The OCPN is 9-tuple OCPN = {P, T, A, M, D, TS, PR, PC, PS} where:
P = {p0, p1, . . . , pm} is a finite set of places with m ≥ 0;
T = {t0, t1, . . . , tn} is a finite set of transitions with n ≥ 0 and P ∩ T = Φ;
A = {P × T } ∪ {T × P} is a mapping arcs between places and transitions;
M : P → I represents the tokens distributed in the place where I is the integer;
D : P → R+, represents the augmented duration D of the place where R+ is a
non-negative real number;
TS : P → {IntraS, InterS} defines different transition types. IntraS is the
intra-object synchronization and InterS is the inter-object synchronization;
PR : P → R represents the request of the clients;
PC : P → C defines the model construction operation;
PS : P → S defines the scheduling operation in the encoder.

The above P , T and A definitions are the same as that of the Petri net.
Number of tokens to be deposited at a given place p is indicated by M . The
firing condition of both IntraS and InterS are determined by the token states
at the input place.

Generally, a MPEG-4 based video session is much complicated and enforces
different characteristic at various syntax levels, such as video session (VS), video
object (VO) and video object plane (VOP) as specified by the standard. It is
important that such hierarchical levels of synchronization can be depicted by
the model to enable the handling of large and complex MPEG-4 scenarios. For
OCPN, such hierarchical modeling capabilities can be achieved through subnet
replacement: at the highest level abstraction, OCPN can be represented by a set
of abstract place, and each abstract place can be decomposed into an OCPN sub-
net, the abstract places in the sub-OCPN indicate finer-grained data units and
timing constraints; similarly, the sub-OCPN places can in turn be an abstraction
of the lower OCPN subnet, and such replacement process can be recursively ap-
plied until to the lowest level where each place can not be decomposed any more.
In our approach, we define three levels OCPN, namely VS-OCPN, VO-OCPN
and VOP-OCPN. The abstract place of OCPN at different level is defined as:
PV S : P → V S represents the entire video session;
PV O : P → {V O0, V O1, . . . , V ON−1} represents a set of video objects;
PV OP : P → {V OP0, V OP1, . . . , V OPM−1} represents video object planes;



Modeling and Scheduling for MPEG-4 Based Video Encoder 311

VS-OCPN is the highest level with an abstract place PV S which indicates
the entire video session. VO-OCPN is the middle level with a set of places PV O
representing the video objects, and the transition known as InterS describes
the temporal precedence and synchronization between the video objects. The
lowest level VOP-OCPN is composed of places PV OP which represent frames
of the video object. Both intra-object synchronization IntraS and inter-object
synchronization InterS can be depicted by the VOP-OCPN. Fig.3 shows a de-
composition process of an OCPN, and Fig.4 is the global VOP-OCPN represen-
tation equivalent to the example of Fig.2. The time instance t1, t2 and t3 are set
to 0 second, 3 second and 6 second respectively.

Pi VS Pf

VO0

VO1

Pi VO3 Pf

VO2

VOP2,0 VOP2,1 VOP2,2

VS_OCPN

VO_OCPN

Pf

VOP_OCPN

Pi

Fig. 3. Decomposition of an OCPN.

Pi

VOP0,29 VOP3,0 VOP3,14VOP0,2VOP0,0 VOP0,1 VOP0,28

Pf

VOP2,14VOP2,0 VOP2,15 VOP2,29

VOP1,29VOP1,0 VOP1,1 VOP1,2 VOP1,28

Fig. 4. Global VOP-OCPN example.

For most pre-orchestrated video sequences, as the timing constraints are
known a prior, it is possible to determine the structure of a OCPN beforehand.
For live video data, however, since related knowledge for constructing the OCPN
cannot be verified a prior, a model has to be generated along with the video ses-
sion. In addition, either pre-orchestrated or live video data can be ceased and
new video data can be introduced at any time by the user interactions, and
the temporal relationships between the video objects may also be manipulated
by the user. Due to such unpredictable behaviours of the user interaction, the
OCPN model should be able to support both deterministic as well as imprecise
events on the fly.

Fig.5 illustrates the generation strategy of the OCPN (using Fig.3 as an ex-
ample) which allows user participate actively. Corresponding to the user request
as we assumed, the OCPN model can be generated at run-time. At the begin-
ning of time t0, we can obtain the attributes such as playout deadlines and data



312 Yong He, Ishfaq Ahmad, and Ming L. Liou

dependency of V O0, V O1 and V O2 initially, and construct the OCPN as place
PC0 indicated. Such model may remains the same if all VOs status are stable.
Being caused by user’s interaction PR0 at time t1, V O0 and V O1 are halted and
a new V O3 is succeeded and synchronized with V O2. Thus, the model should
be changed by PC1. The same approach PC2 is performed at time t2 and the
video session is stopped by the request PR1. With such dynamic construction
process, external interrupts can be quickly responded and scheduling decision
can be carried out consequently.

0VO

1VO

2VO

PR1

2VO

3VO

PC1PC PCPi 0 2

0PR

Pf

Fig. 5. Construction of OCPN model on VO level.

3.2 Dynamic Scheduling of Multiple Objects

Using the information generated by the model, the video objects need to be
scheduled to multiple workstations for concurrent encoding. The objective of
a scheduling algorithm in a parallel processing environment is to minimize the
overall execution time of a concurrent program by properly allocating the tasks
to the processors and sequencing their executions [3]. A scheduling algorithm
can be characterized as being either static or dynamic. Static scheduling incurs
little run-time cost but cannot adapt to the indeterministic behaviour of the
system. On the other hand, although dynamic scheduling is more flexible as it
can be adjusted to system changes, it incurs a high run-time cost. In a MPEG-
4 video session, any static scheduling method may cause load imbalance due
to the unpredictable behaviour of the video objects with varying computation
requirement.

In order to solve such problem, we have to observe object variation and adjust
the processor distribution of each object dynamically, while this may also intro-
duce high inter-processor communication cost which may outweigh the benefit
achieved. To compromise such trade-off in a natural way, we propose a dynamic
scheduling algorithm, called GOV-Adjusting Scheduling (GAS) algorithm where
GOV stands for Group of VOP, which periodically detects the workload infor-
mation of the processors and performs the scheduling. In order to minimize the
inter-processor communication cost, the period is based on the Group of VOP
(GOV). GOV is an optional syntax level specified by the standard for random
access and error recovery purpose. The GOV header usually is followed by the
I-VOP performing Intra-coding which is independent to the previous VOPs and
no data exchange needed. Therefore, the re-assignment of the processors will not
introduce additional inter-processor communication.



Modeling and Scheduling for MPEG-4 Based Video Encoder 313

Some of the additional notations used in the algorithms are presented below:
V : is scheduling sequence of the video session
Pk: is the k-th processor of the system, and total number of processors is K
Rk: is the scheduler on Pk

Lx: is the x-th GOV intervals
Gi : M → gi where gi ∈ I, is a mapping from the set of tokens to a set of
groups Gi containing gi processors each. Basically, such mapping describes the
processors distribution with the scheduling scheme
υk: is the partitioned data area of the VOP to Pk

τi: is the synchronization interval of the video object V Oi.

GAS Algorithm:

1. Initialize the GOV interval Lx

2. Sort VOPs of each existing video object V Oi in V using EDF rule
3. Measure the shape size of the first I-VOP along the Lx as Si

4. Initialize Rk = {} and calculate the gi for processors distribution

gi =




⌊
K × Si/τi∑N−1

i=0
Si/τi

⌋
if

⌊
K × Si/τi∑N−1

i=0
Si/τi

⌋
> 1

1 otherwise

where i = 0, 1, . . . , N − 2, and

gN−1 = K −
N−2∑
i=1

gi

5. Decide whether task merging should be performed or not
6. Point to the first V OPi,j of V
7. Schedule Rk to the pointing V OPi,j with Pk ∈ Gi and {Rk = Rk ∪ V OPi,j}
8. Partition the VOP and map the data area υk to Pk where υk ≈ Si

gi

9. Advance the V OPi,j to the next V OPi,j+1 along the V
10. Repeat last three steps until the end of the GOV
11. Goto step 2 and start the next GOV scheduling until the end of the video

session

GAS algorithm divides the existing processors into a number of groups and
each group handles single video object concurrently. Such allocation is performed
periodically on the basis of the GOV. Within each group, a balanced data par-
titioning method [2] is employed for further encoding speedup.

An earliest-deadline-first (EDF) rule is applied in the second step of GAS
algorithm, it specified that the tasks with earlier deadlines are assigned higher
priorities and are executed before tasks with lower priorities. In our implemen-
tation, VOPs with the earlier playout deadlines or synchronization constraints
are encoded and delivered first.

The criterion of processor allocation is tied to the shape size and playout
duration as Step 4 shows, namely, the larger object size, the more processors



314 Yong He, Ishfaq Ahmad, and Ming L. Liou

assigned; the shorter the playout duration, the more processors assigned. While
this may cause load imbalance between the groups since the distribution of the
processors may not be proportional to the size of the video objects due to the
excessive difference between the object size. One feasible solution is to merge
the smallest object tasks together recursively as Step 5 indicates.

Such task merging is usually performed whenever the number of tasks is
greater than the number of physical processors by merging a pair of tasks into a
single co-task. There are various merging approaches for different purpose. While
In our approach, such task merging step is to guarantee the load balancing among
the processors. We define the GOV of each video object as a task, and find a pair
of tasks which have minimum workload among all the clusters; then the pair of
tasks are merged as one task and such operation is recursively executed until
the load balancing can be met, namely, the distribution ratio of the processors
are nearly equal to the size ratio of the video objects.

4 Experimental Results

We have tested the GAS algorithm on several composed sequences to demon-
strate the performance achieved. All the video objects, such as Akiyo, News1 and
Weather as labeled in Fig.6, are obtained from the MPEG-4 standard test li-
brary with QCIF format and represent various characteristics in terms of spatial
detail and movement.

1 2 4 8 12 16 20
0

5

10

15

20

25

30

35

40

45

Workstations

fra
me

 ra
te (

fra
me

s/s
ec.

)

Weather+Akiyo
News1+News2
Children+Akiyo
Bream+News2
Weather+Children

1 2 4 8 12 16 20

2

4

6

8

10

12

14

Workstations

Sp
eed

up 
rat

io

(a) (b)

Weather+Akiyo
News1+News2
Children+Akiyo
Bream+News2
Weather+Children

Fig. 6. Encoder performance

Our software-based implementation is applied on the MPEG-4 video veri-
fication model (VM8.0) encoder. The parallel platform is a cluster of 20 Sparc
Ultra 1 workstations connected by a ForeSystems ATM switch (ASX-1000) which
provides fast communication among the workstations. For inter-processor com-
munication and synchronization, we use Message Passing Interface (MPI) [9],
which ensures the portability of our MPEG-4 video encoder across various plat-
forms. Furthermore, various additional software optimization, such as fast mo-



Modeling and Scheduling for MPEG-4 Based Video Encoder 315

tion estimation algorithm, Visual Instruction Set (VIS) and Solaris C compiler
optimizations, have been made to further speedup the encoder computation.

Fig.6(a) shows the encoding frame rate achieved by the GAS algorithms for
the sequences with two video objects using various number of workstations. We
can achieve frame rate higher than the real-time performance (30 frames/second)
on most standard test sequences. Fig.6(b) is the overall speedup, a near-linear
speedup relationship demonstrates that the performance of the encoder can scale
according to the number of workstations used.

5 Conclusions

In this paper a software-based parallel implementation of MPEG-4 video en-
coder using a cluster of workstations has been proposed. The contribution of
our work includes the use of an OCPN model to capture the spatio-temporal
relations between multiple objects of MPEG-4 video, and a dynamic scheduling
algorithm to implement MPEG-4 video encoder for multiple video objects. In
our future work, we will explore MPEG-4 decoders and interactive methodology
for supporting multimedia applications.

Acknowledgments

This work was supported by the Hong kong Telecom Institute of Information
Technology. The authors would also like to thank Dr. Ya-Qin Zhang of Sarnoff
Corporation for technical support.

References

1. L. Chiariglione, “MPEG and Multimedia Communications,” IEEE Transactions
on CSVT, vol. 7, no. 1, pp. 5-18, Feb. 1997.

2. Y. He, I. Ahmad and M. L. Liou, “Real-Time Distributed and Parallel Processing
for MPEG-4,” Proceedings of the 1998 International Symposium on Circuits and
Systems, vol. 3, pp. 603-606, 1998.

3. Y. K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multiprocessors,” IEEE Trans. on Parallel and
Distributed Systems, vol. 7, no. 5, pp.506-521, May 1996.

4. ISO/IEC, “MPEG-4 Version 1 Overview,” JTC1/SC29/WG11 N2323, July 1998.
5. ISO/IEC, ”MPEG-4 Applications Document,” JTC1/SC29/WG11 N2322, July

1998.
6. ISO/IEC, ”MPEG-4 Video Verification Model 8.0,” JTC1/SC29/WG11 N1796, July

1997.
7. T.D.C. Little and A. Ghafoor, “Synchronization and Storage Models for Multimedia

Objects,” IEEE Journal on Selected Areas in Communication, vol. 8, pp. 413-427,
Apr. 1990.

8. T. Sikora, “The MPEG-4 Video Standard Verification Model,” IEEE Transactions
on CSVT, vol. 7, no. 1, pp. 19-31, Feb. 1997.



316 Yong He, Ishfaq Ahmad, and Ming L. Liou

9. D. W. Walker, and J. J. Dongarra, “MPI: a Standard Message Passing Interface,”
Supercomputer, vol. 12, no. 1, pp. 56-68, Jan. 1996.

10. M. Woo, N. U. Qazi, and A. Ghafoor, “A Synchronization Framework for Commu-
nication of Pre-orchestrated Multimedia Information,” IEEE Network, vol. 8, pp.
52-61, Jan. 1994.


	Introduction
	Overview of MPEG-4 Video Verification Model
	MPEG-4 Video Encoder Parallelism
	Modeling MPEG-4 Video with Object Composition Petri Nets
	Dynamic Scheduling of Multiple Objects

	Experimental Results
	Conclusions

